1. Let \(c : 2^A \rightarrow \mathbb{R}_+ \) be a cost function and \(\xi : A \times 2^A \rightarrow \mathbb{R}_+ \) be a cross-monotone cost-sharing scheme, where \(A = \{1, 2, \ldots, n\} \) is the set of players. We showed in class that, given any vector \((v_1, \ldots, v_n) \in \mathbb{R}_+^n \) of values, there is a unique maximal happy set \(S \subseteq A \) that satisfies
\[
v_i \geq \xi(i, S), \quad \text{for all } i \in S.
\]
Prove that the following simple algorithm always returns the maximal happy set (which is far more efficient than enumerating all possible subsets \(S \) of \(A \)):

(a) Initialize \(S \leftarrow A \)

(b) Repeat

Set \(S \leftarrow \{i \in S : v_i \geq \xi(i, S)\} \)

(or equivalently, remove all the \(i \)'s from \(S \) that satisfy \(v_i < \xi(i, S)\))

(c) Until \(v_i \geq \xi(i, S) \) for all \(i \in S \) or \(S = \emptyset \), and return \(S \)

2. Let \(c \) be a cost function and \(\xi \) be a cross-monotone cost-sharing scheme. We used \(\xi \) to construct a mechanism \(M_\xi \) in class. To prove that it is group incentive compatible, we showed in class that any subset of players cannot manipulate \(M_\xi \) by bidding lower than their true values. Now prove the following lemma which shows that overbidding does not help. (Hint: Start with the case when \(|C| = 1 \).) By combining these two pieces together, we get that \(M_\xi \) is group incentive compatible.

Lemma 1. Let \(\mathbf{v} = (v_1, \ldots, v_n) \) be the true values of the players \(A = \{1, \ldots, n\} \). Let \(C \subseteq A \) be a subset of players and \(\mathbf{v'} = (v'_1, \ldots, v'_n) \) be a new vector in which

1. \(v'_i = v_i \) for all \(i \notin C \); and

2. \(v'_i \geq v_i \) for all \(i \in C \).

(In other words, players in \(C \) overbid.) We let \(u_i \) denote the utility of player \(i \), for every \(i \in A \), when the mechanism \(M_\xi \) sees \(\mathbf{v} \); and \(u'_i \) denote the utility of player \(i \) when \(M_\xi \) sees \(\mathbf{v'} \). Show that if \(u'_i \geq u_i \) for all \(i \in C \), then the maximal happy sets in the two cases are the same (and thus, changing \(\mathbf{v} \) to \(\mathbf{v'} \) does not affect the outcome of \(M_\xi \) and \(u'_i = u_i \) for all \(i \in A \)).