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Lecture 3 – Network Congestion Game/Mixed (Nash) Equilibrium

Instructor: Xi Chen Scribes: Zheng Yifu , Liu Rui

1 Network Congestion Game

Definition 1.1. Review definition of Network Congestion Game:

• There’re k players in the game

• Playeri can pick any pathi connecting si and ti

• ∀e ∈ G : cost function is Ce(ke)

where, ke is the number of players using the edge e in (P1, . . . , Pk)

• The cost for playeri is Ci(P1, . . . , Pk) =
∑

e∈Pi
Ce(ke)

where, ke is the number of players using the edge e in (P1, . . . , Pk)

• The total cost of the game is C(P1, . . . , Pk) =
∑k

i=1Ci(P1, . . . , Pk)

Theorem 1.1. If all the Ce(·) are affine linear:

Ce(k) = ae ∗ k + be (ae, be ≥ 0)

PoA ≤ 2.618 = 3+
√
5

2 .

Proof. Let (P ∗1 , . . . , P
∗
k ) be a PE and (P ′1, . . . , P

′
k) be a social optimum:

The cost for playeri in PE is:

Ci(P
∗
1 , . . . , P

∗
i , . . . , P

∗
k ) ≤ Ci(P

∗
1 , . . . , P

′
i , . . . , P

∗
k )

=
∑
e∈P ′i

Ce(] players using e in(P ∗1 , . . . , P
′
i , . . . , P

∗
k ))

≤
∑
e∈P ′i

Ce(ke + 1)

≤
∑
e∈P ′i

Ce(ke + k′e)

1



Then, we know the total cost of the game in PE is:

C(P ∗1 , . . . , P
∗
k ) =

k∑
i=1

Ci(P
∗
1 , . . . , P

∗
k )

≤
k∑

i=1

∑
e∈P ′i

Ce(ke + k′e)

=
∑
e∈G

k′e · Ce(ke + k′e)

=
∑
e∈G

k′e · (ae · (ke + k′e) + be)

=
∑
e∈G

k′e · ((ae · k′e + be) + ae · ke)

=
∑
e∈G

k′e · (Ce(k
′
e) + ae · ke)

=
∑
e∈G

k′e · Ce(k
′
e) +

∑
e∈G

ae · ke · k′e

= C(P ′1, . . . , P
′
k) +

∑
e∈G

ae · ke · k′e

Next, let consider
∑

e∈G ae · ke · k′e (1):

By applying Cauchy Schwarz Inequality: for x1, . . . , xn and y1, . . . , yn

(

n∑
i=1

xi · yi)2 ≤ (

n∑
i=1

x2i ) · (
n∑

i=1

y2i )

to (1), where, for e ∈ G, xe =
√
ae · ke, ye =

√
ae · k′e:

∑
e∈G

ae · ke · k′e = (
∑
e∈G

ae · ke · k′e)2

≤ (
∑
e∈G

ae · k2e)(
∑
e∈G

ae · k′e
2
)

≤ C(P ∗1 , . . . , P
∗
k ) · C(P ′1, . . . , P

′
k)

The last step of derivation results from:

C(P ′1, . . . , P
′
k) =

∑
e∈G

k′e · Ce(k
′
e)

=
∑
e∈G

k′e · (ae · k′e + be)

≥
∑
e∈G

ae · k′e
2

since, ae, be ≥ 0
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Similarly, we can get C(P ∗1 , . . . , P
∗
k ) ≥

∑
e∈G ae · k2e Thus, we have:

C(P ∗1 , . . . , P
∗
k ) ≤ C(P ′1, . . . , P

′
k) +

√
C(P ∗1 , . . . , P

∗
k ) · C(P ′1, . . . , P

′
k)

Divide the inequality above by C(P ′1, . . . , P
′
k) on both sides:

C(P ∗1 , . . . , P
∗
k )

C(P ′1, . . . , P
′
k)
≤ 1 +

√
C(P ∗1 , . . . , P

∗
k )

C(P ′1, . . . , P
′
k)

Denote α =
C(P ∗1 ,...,P

∗
k )

C(P ′1,...,P
′
k)

:

α ≤ 1 +
√
α

After deriving:

(α− 3

2
)2 ≤ 5

4

Then, we get:

α ≤ 3 +
√

5

2

Thus,

PoA =
C(P ∗1 , . . . , P

∗
k )

C(P ′1, . . . , P
′
k)
≤ 3 +

√
5

2
= 2.618

The key point in the process of proving this theorem is to utilize the definition of PE to derive the

relationship between C(P ∗1 , . . . , P
∗
k ) and C(P ′1, . . . , P

′
k).

2 Mixed (Nash) Equilibrium

2.1 Introduction to Mixed Equilibrium

Consider a game G = (A,B), where,A,B are both m× n matrices :

• There’re two players in the game

- player1 has m actions to choose from

- player2 has n actions to choose from

• If player1 picks actioni and player2 picks actionj

- player1 receives Ai,j

- player2 receives Bi,j

For example:

R P S

A =

R

P

S

 0 −1 +1

+1 0 −1

−1 +1 0


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R P S

B =

R

P

S

 0 +1 −1

−1 0 +1

+1 −1 0


If player1 picks actionR and player2 picks actionS , then, according to the matrices above, player1 receives

+1 and player2 receives -1. At this time, player2 must try to change to actionP , which is his or her best

response to player′1s actionR. Thus, we notice that, in this game, there’s no PE if two players choose

their own actions one by one.

Next, we modify the game a little bit like the following:

• 4m = {x ∈ Rm | xi ≥ 0 ∀i and
∑

i xi = 1} is the probability distribution set of player′1s actions

• 4n = {x ∈ Rn | yi ≥ 0 ∀i and
∑

i yi = 1} is the probability distribution set of player′2s actions

• player1 has m actions to choose from in any action’s probability distribution x ∈ 4m

• player2 has n actions to choose from in any action’s probability distribution y ∈ 4n

• player1 picks actioni with probability xi

• player2 picks actionj with probability yj

Definition 2.1.1. (i, j) is a pure equilibrium if:

1. actioni is a best response w.r.t. actionj, if Ai,j ≥ Ai′,j ,∀i′ ∈ [m]

2. actionj is a best response w.r.t. actioni, if Bi,j ≥ Bi,j′ , ∀j′ ∈ [n]

Definition 2.1.2. (x,y) (x ∈ 4m,y ∈ 4n) is a mixed equilibrium if:

1. x is a best response w.r.t. y

xTAy ≥ (x′)TAy,∀x′ ∈ 4m

where, xTAy =
∑

ij xiAi,jyj, which is the expected payoff

2. actiony is a best response w.r.t. actionx
xTBy ≥ xTB(y′),∀y′ ∈ 4n

2.2 Advantages and Disadvantages of Mixed Equilibrium

stable there may be multiple/infinite many mixed equilibria

always exit (Nash 1950) do not consider risk

inefficient

different from experiments
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3 Two-play zero sum games

3.1 Definition of the game

In a two-player zero sum game, we are given a m × n matrix M and two players. G=(M,−M).

Therefore, there are m strategies for player 1 and n strategies for player 2. In this game, Player 1 picks a

m-dimensional distribution x ∈∆m, while player 2 picks a n-dimensional distribution y ∈∆n. According

to the distribution x and y, player 1 picks the strategy i with the probability xi and player 2 picks the

strategy j with the probability yj . And if they do so, player 1 will get the utility of Mi,j , while player

2 will pay cost of −Mi,j . The sum of the payoffs of the two players is zero as the name of the game

indicates.

Definition 3.1.1. (x,y) is a mixed equilibrium in a two-player zero sum game if it satisfies the following

inequalities,

∀x′ ∈∆m, xTMy ≥ (x
′
)TMy

∀y′ ∈∆n, xTMy ≤ xTMy
′

von Neumann’s proof later implies a polynomial time algorithm for finding a mixed equilibrium.

3.2 Existence of mixed equilibrium

In order to prove the existence of mixed equilibrium in the two-player zero sum games, first of all we

introduce the Minimax Theorem.

Theorem 3.2.1. maxx∈∆m(miny∈∆nxTMy) = miny∈∆n(maxx∈∆mxTMy), where x is a m-dimensional

distribution, y is a n-dimensional distribution and M is a m× n matrix.

To see why this theorem will be helpful in proving the existence of mixed equilibrium in the two-player

zero sum games, let’s consider the following two cases.

Case 1: Player 1 picks x ∈∆m first.

In this case, player 2 will pick y ∈∆n that makes xTMy = miny′∈∆n
xTMy

′
. To make the utility

maximum, player 1 of course picked x ∈∆m in the way that,

xTMy = maxx′∈∆m(miny′∈∆n
(x
′
)TMy

′
) (1)

Case 2: Player 2 picks y ∈∆n first.

In this case, player 1 will pick x ∈∆m that makes xTMy = maxx′∈∆m
(x
′
)TMy. To make the cost

miminum, player 2 picked y ∈∆n in the way that,

xTMy = miny′∈∆n(maxx′∈∆m
(x
′
)TMy

′
) (2)

In result, (x,y) is a mixed equilibrium is equivalent to that the right side of equation (1) and the

right side of equation (2) are equal to each other.

Now we make use of Minimax Theorem to prove the existence of mixed equilibrium in the two-player

zero sum games.
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Proof. Denote x∗ = argmaxx∈∆m(miny∈∆nxTMy), y∗ = argminy∈∆n(maxx∈∆mxTMy). Now we

prove that (x∗, y∗) is a mixed equilibrium.

As the definitions of x∗ and y∗ indicates,

(x∗)TMy∗ ≤ maxx∈∆mxTMy∗ (3)

(x∗)TMy∗ ≥ miny∈∆n(x∗)TMy (4)

And according to Minimax Theorem, we have that,

maxx∈∆mxTMy∗ = miny∈∆n(x∗)TMy (5)

Define V = maxx∈∆mxTMy∗ = miny∈∆n(x∗)TMy.

So, with respect to inequality (3), (4) and the equation (5), we get that,

(x∗)TMy∗ = V = maxx∈∆m(miny∈∆nxTMy) = miny∈∆n(maxx∈∆mxTMy) (6)

Hence, we prove the existence of mixed equilibrium in the two-player zero sum games.

3.3 Proof of Minimax Theorem

In section 3.2, we made use of Minimax Therom without proving. Now we will prove this theorem.

Before that, we will first introduce another theorem, named as Duality Theorem.

Theorem 3.3.1. LP1 and LP2 are two linear programs which are dual to each other. The two programs

are defined as follows.

LP1:

maximize cTx = (c1 c2 . . . ck)


x1
x2
...

xk

 = opt1 (7)

subject to:

Ax ≤ b (8)

x ≥ 0 (9)

where A is a l × k matrix and b is a l × 1 vector.

LP2:

minimize bTy = (b1 b2 . . . bl)


y1
y2
...

yl

 = opt2 (10)

subject to:

ATy ≥ c (11)

y ≥ 0 (12)

where A,b, c are all the same as those in LP1.
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Considering LP1 and LP2 defined above, we have,

opt1 = opt2 (13)

Next, we denote M∗,j as the jth column of matrix M and Mi,∗ as the ith row of matrix M. In this

way, we have,

minyxTMy = minj∈[n]x
TM∗,j (14)

maxxxTMy = maxi∈[m]Mi,∗y (15)

In this way, we could rewrite the Minimax Theorem as follows,

maxx∈∆m(minj∈[n]x
TM∗,j) = miny∈∆n(maxi∈[m]Mi,∗y) = V (16)

Now the proof of the Minimax Theorem is as follows,

Proof. Define LP1 as:

maximize v (17)

subject to:

x ≥ 0 (18)

Σxi = 1 (19)

∀j ∈ [n],xTM∗,j ≥ v (20)

Define LP2 as:

minimize w (21)

subject to:

y ≥ 0 (22)

Σyi = 1 (23)

∀i ∈ [m],Mi,∗y ≤ w (24)

Then according to Duality Theorem, We have

maxx∈∆m(minj∈[n]x
TM∗,j) = miny∈∆n(maxi∈[m]Mi,∗y) (25)

which is equivalent to Minimax Theorem.
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