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1 Brouwer’s fixed point theorem

We are going to show Brouwer’s fixed point theorem for triangles:

Theorem 1. Let △ be a triangle in R2. Then every continuous function f from △ to itself has a fixed

point x ∈ △ such that f(x) = x.

Proof. For convenience, we will prove the theorem for the following particular triangle △:
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(0,0)

(0,1)

(1,0)

Without loss of generality, we assume the three vertices of △, (0, 0), (1, 0) and (0, 1), are not fixed point;

otherwise we are already done.

The plan of the proof is as follows. For every i > 1, we let Si denote the standard i-th triangulation

of △. Given f , we will define carefully a 3-coloring Ci over the vertices of Si for every i > 1. We will then

show that Ci is a proper coloring for all i and thus, by Sperner’s lemma, has at least one trichromatic

triangle, denoted by △i. As i goes up, this sequence of trichromatic triangles {△i} becomes smaller and

smaller. We use ui,vi,wi ∈ R2 to denote the red, blue, green vertex of △i, respectively. Because {ui} is

an infinite sequence of points in △, it must have a converging subsequence {uij}j≥1. We finish the proof

by showing that the limit of {uij}j≥1 must be a fixed point of f .

Definition of Ci over Si:

Let v = (v1, v2) be any vertex of Si, where v1 is the x-coordinate of v and v2 is the y-coordinate of

v. We use f(v) = (f1(v), f2(v)) to color v as follows:

1. If f2(v) < v2, set Ci(v) to be red;

2. If f2(v) ≥ v2 and f1(v) < v1, set Ci(v) to be blue;

3. Otherwise (when f2(v) ≥ v2 and f1(v) ≥ v1), set Ci(v) to be green.

By following these rules (and using the assumption that the three vertices of △ are not fixed point of f),

it is easy to check that the color of (0, 1) must be red; the color of (1, 0) must be blue; the color of (0, 0)

must be green; and moreover, Ci is a proper 3-coloring over Si.
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Then by Sperner’s lemma, we know that Ci has at least one trichromatic triangle △i, and we denote

its red, blue and green vertex by ui,vi and wi ∈ △, respectively. In this way, we get an infinite sequence

of points {ui} in △. Because △ is clearly bounded and closed, {ui} must have a converging subsequence

{uij}j≥1, with indices i1 < i2 < · · · . We use x ∈ △ to denote its limit.

x is a fixed point of f :

First of all, since the size of △i decreases strictly as i goes up. It is easy to show that both sequences

{vij}j≥1 and {wij}j≥1 converge to x.

Because every point u in the sequence {uij} is red, by the coloring rule, we have

f2(u) < u2, for all u in the sequence.

Since x is the limit of the sequence {uij} and f is continuous, we have f2(x) ≤ x2.

Similarly, because every point v in the sequence {vij} is blue, by the coloring rule, we have

f1(v) < v1, for all v in the sequence.

Since x is the limit of the sequence {vij} and f is continuous, we have f1(x) ≤ x1.

Finally, because every point w in the sequence {wij} is green, by the coloring rule, we have

f1(w) ≥ w1 and f2(w) ≥ w2, for all w in the sequence.

Since x is the limit of the sequence {wij} and f is continuous, we have f1(x) ≥ x1 and f2(x) ≥ x2.

Combining all four inequalities, we conclude that x is a fixed point of f .

2 Existence of Rational Nash Equilibria in Two-Player Games

Given a two-player game G = (A,B), where every entry of A and B is rational, does it always have a

rational Nash equilibrium (x,y) in which all the entries are rational numbers? In Nash’s paper, he gave

a very simple three-player rational game with no rational Nash equilibrium. However, we will prove the

following theorem:

Theorem 2. Every rational two-player game G = (A,B) has a rational Nash Equilibrium (x,y). More-

over, the number of bits needed to describe (x,y) is polynomial in the input size of G.

Proof. We will use the following property: If a rational linear program has a solution, then it always has

a rational solution. Furthermore, the number of bits needed to describe it is polynomial in the input size

of the linear program.

We use the idea of Support Enumeration. Given vectors x ∈ ∆m and y ∈ ∆n, we let

Supp(x) = {i|xi > 0} ⊆ [m] and Supp(y) = {j|yj > 0} ⊆ [n].

Now for any pair of nonempty subsets S ⊆ [m] and T ⊆ [n], we let LP(S, T ) denote the following linear
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program with variables x1, . . . , xm, y1, . . . , yn:

LP(S, T ) :∑
i∈[m]

xi = 1

xi > 0 for all i ∈ S

xi = 0 for all i /∈ S∑
j∈[n]

yj = 1

yj > 0 for all j ∈ T

yj = 0 for all j /∈ T

Ai,∗y ≥ Aj,∗y for all i ∈ S and j ∈ [m]

xTB∗,i ≥ xTB∗,j for all i ∈ T and j ∈ [n]

By the definition of Nash equilibria, it is easy to prove the following property:

Property 3. The linear program LP (S, T ) has a solution (x,y) if and only if (x,y) is a Nash equilibrium

of G = (A,B) such that

Supp(x) = S and Supp(y) = T.

Now by Nash’s theorem, we know G = (A,B) has a Nash equilibrium (x∗,y∗) (even though it may

not be rational). Let S = Supp(x∗) and T = Supp(y∗), then by the property above, (x∗,y∗) is a solution

to the linear program LP(S, T ). As a result, we know that LP(S, T ) has a rational solution which we

denote by (x,y), and the number of bits needed to describe (x,y) is polynomial in the input size of G.

Using the property above again, (x,y) must also be an equilibrium of G, and the theorem follows.

3 Approximation of Nash Equilibrium

We combine support enumeration with the probabilistic method to give an approximation algorithm for

Nash equilibria. In this section, we always assume that the entries of A and B are between 0 and 1. For

simplicity, we also assume that both matrices are n-by-n.

Definition 4. Given G = (A,B) with Ai,j , Bi,j ∈ [0, 1] for all i, j ∈ [n], we say (x,y) is an ϵ-approximate

Nash equilibrium for some ϵ > 0 if

xTAy ≥ (x′)TAy − ϵ, for all x′ ∈ ∆n;

xTBy ≥ xTBy′ − ϵ, for all y′ ∈ ∆n.

We say a probability distribution x is k-uniform, for some k ≥ 1, if every entry xi of x is a multiple

of 1/k. One way to interpret k-uniform distributions is to imagine that there are k balls numbered from

1 to k; and there are n bins numbered from 1 to n. The balls are then tossed arbitrarily into the bins.
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Every possible result gives a k-uniform distribution:

xi =
# of balls in bin i

k
, for all i ∈ [n].

We will use the probability method to prove the following theorem:

Theorem 5. Given any two-player game G = (A,B) with Ai,j , Bi,j ∈ [0, 1] for all i, j ∈ [n], it has an

ϵ-approximate Nash Equilibrium (x,y) in which both x and y are k-uniform distributions with

k =
100 · lnn

ϵ2
.

This theorem gives us the following algorithm to compute an ϵ-approximate Nash equilibrium:

1. Enumerate all pairs of k-uniform probability distributions (x,y);

2. Output (x,y) if it is an ϵ-approximate Nash equilibrium.

The correctness of this (support enumeration) algorithm (that it always outputs an ϵ-approximate Nash

equilibrium of G) follows from the theorem above. It is also easy to see that its time complexity is

nO(k) = nO(lnn/ϵ2).

Proof Sketch of Theorem 5. First of all, by Nash’s theorem, G has an equilibrium (x,y) with x,y ∈ ∆n.

We use the probabilistic method. To this end, we randomly pick a k-uniform probability distribution

x̂ as follows:

1. For each i ∈ [k], independently put ball i into bin j, j ∈ [n], with probability xj ;

2. Then set x̂j = # of balls in bin j
/
k for all j ∈ [n].

We also randomly and independently pick a k-uniform distribution ŷ ∈ ∆n using y in the same way.

To prove there exists an ϵ-approximate Nash equilibrium in which both distributions are k-uniform,

it suffices to show that

Pr
[
(x̂, ŷ) is an ϵ-approximate Nash equilibrium of G = (A,B)

]
> 0.

By the definition of ϵ-approximate equilibria, it suffices to show that

Pr

(
∀ i, Ai,∗ŷ ≤ x̂TAŷ + ϵ

∀j, x̂TB∗,j ≤ x̂TBŷ + ϵ

)
> 0.

This will follow directly if we can prove that: For every i ∈ [n],

Pr
[
Ai,∗ŷ − x̂TAŷ > ϵ

]
<

1

n20
(1)

and for every j ∈ [n],

Pr
[
x̂TB∗,j − x̂TBŷ > ϵ

]
<

1

n20
. (2)
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To prove (1), we rewrite it as

Pr
[
(Ai,∗ŷ −Ai,∗y) + (Ai,∗y − xTAy) + (xTAy − x̂TAy) + (x̂TAy − x̂TAŷ) > ϵ

]
. (3)

Because (x,y) is a Nash equilibrium, it follows from the definition that (Ai,∗y−xTAy) ≤ 0. As a result,

the probability in (3) is upper bounded by

Pr
[
Ai,∗ŷ −Ai,∗y > ϵ/3 or xTAy − x̂TAy > ϵ/3 or x̂TAy − x̂TAŷ > ϵ/3

]
≤ Pr

[
Ai,∗ŷ −Ai,∗y > ϵ/3

]
+ Pr

[
xTAy − x̂TAy > ϵ/3

]
+ Pr

[
x̂TAy − x̂TAŷ > ϵ/3

]
.

We bound the first term using the Hoeffding inequality. For each ℓ ∈ [k], let zℓ denote the following

random variable: zℓ = Ai,j , if ball ℓ is tossed into bin j (when generating ŷ randomly from y), which

happens with probability yj . As a result,

E(zℓ) =
∑
j∈[n]

Ai,j · yj = Ai,∗y and E(z1 + · · ·+ zk) = k ·Ai,∗y.

We also have

z1 + · · ·+ zk =
∑
j∈[n]

Ai,j ·# of balls in bin j = k ·Ai,∗ŷ.

By using the Hoeffding inequality, we have

Pr
[
Ai,∗ŷ −Ai,∗y > ϵ/3

]
= Pr

[
(z1 + · · ·+ zk)− E(z1 + · · ·+ zk) > k · ϵ/3

]
≤ e−

2kϵ2

9 = e−
200 lnn

9 ≪ 1

n20
.

We can see that the probability of event
[
Ai,∗ŷ−Ai,∗y > ϵ/3

]
is pretty small. Similarly, one can use

Hoeffding inequality to prove that both

Pr
[
xTAy − x̂TAy > ϵ/3

]
and Pr

[
x̂TAy − x̂TAŷ > ϵ/3

]
are small. This proves (1). The same argument can be used to prove (2), and the theorem follows.

5


