COMS E6998: Algorithmic Game Theory and Economics Feb 17,2010 ### Lecture 5 – Approximation of Nash Equilibria Instructor: Xi Chen Scribes: Yundi Zhang ### 1 Brouwer's fixed point theorem We are going to show Brouwer's fixed point theorem for triangles: **Theorem 1.** Let \triangle be a triangle in \mathbb{R}^2 . Then every continuous function f from \triangle to itself has a fixed point $\mathbf{x} \in \triangle$ such that $f(\mathbf{x}) = \mathbf{x}$. *Proof.* For convenience, we will prove the theorem for the following particular triangle \triangle : Without loss of generality, we assume the three vertices of \triangle , (0,0), (1,0) and (0,1), are not fixed point; otherwise we are already done. The plan of the proof is as follows. For every i > 1, we let S_i denote the standard i-th triangulation of Δ . Given f, we will define carefully a 3-coloring C_i over the vertices of S_i for every i > 1. We will then show that C_i is a proper coloring for all i and thus, by Sperner's lemma, has at least one trichromatic triangle, denoted by Δ_i . As i goes up, this sequence of trichromatic triangles $\{\Delta_i\}$ becomes smaller and smaller. We use $\mathbf{u}_i, \mathbf{v}_i, \mathbf{w}_i \in \mathbb{R}^2$ to denote the red, blue, green vertex of Δ_i , respectively. Because $\{\mathbf{u}_i\}$ is an infinite sequence of points in Δ , it must have a converging subsequence $\{\mathbf{u}_{i_j}\}_{j\geq 1}$. We finish the proof by showing that the limit of $\{\mathbf{u}_{i_j}\}_{j\geq 1}$ must be a fixed point of f. #### Definition of C_i over S_i : Let $\mathbf{v} = (v_1, v_2)$ be any vertex of S_i , where v_1 is the x-coordinate of \mathbf{v} and v_2 is the y-coordinate of \mathbf{v} . We use $f(\mathbf{v}) = (f_1(\mathbf{v}), f_2(\mathbf{v}))$ to color \mathbf{v} as follows: - 1. If $f_2(\mathbf{v}) < v_2$, set $C_i(\mathbf{v})$ to be red; - 2. If $f_2(\mathbf{v}) \geq v_2$ and $f_1(\mathbf{v}) < v_1$, set $C_i(\mathbf{v})$ to be blue; - 3. Otherwise (when $f_2(\mathbf{v}) \geq v_2$ and $f_1(\mathbf{v}) \geq v_1$), set $C_i(\mathbf{v})$ to be green. By following these rules (and using the assumption that the three vertices of \triangle are not fixed point of f), it is easy to check that the color of (0,1) must be red; the color of (1,0) must be blue; the color of (0,0) must be green; and moreover, C_i is a proper 3-coloring over S_i . Then by Sperner's lemma, we know that C_i has at least one trichromatic triangle \triangle_i , and we denote its red, blue and green vertex by $\mathbf{u}_i, \mathbf{v}_i$ and $\mathbf{w}_i \in \triangle$, respectively. In this way, we get an infinite sequence of points $\{\mathbf{u}_i\}$ in \triangle . Because \triangle is clearly bounded and closed, $\{\mathbf{u}_i\}$ must have a converging subsequence $\{\mathbf{u}_{i_i}\}_{j\geq 1}$, with indices $i_1 < i_2 < \cdots$. We use $\mathbf{x} \in \triangle$ to denote its limit. ### x is a fixed point of f: First of all, since the size of \triangle_i decreases strictly as i goes up. It is easy to show that both sequences $\{\mathbf{v}_{i_j}\}_{j\geq 1}$ and $\{\mathbf{w}_{i_j}\}_{j\geq 1}$ converge to \mathbf{x} . Because every point **u** in the sequence $\{\mathbf{u}_{i_j}\}$ is red, by the coloring rule, we have $$f_2(\mathbf{u}) < u_2$$, for all \mathbf{u} in the sequence. Since \mathbf{x} is the limit of the sequence $\{\mathbf{u}_{i_j}\}$ and f is continuous, we have $f_2(\mathbf{x}) \leq x_2$. Similarly, because every point \mathbf{v} in the sequence $\{\mathbf{v}_{i_j}\}$ is blue, by the coloring rule, we have $$f_1(\mathbf{v}) < v_1$$, for all \mathbf{v} in the sequence. Since \mathbf{x} is the limit of the sequence $\{\mathbf{v}_{i_j}\}$ and f is continuous, we have $f_1(\mathbf{x}) \leq x_1$. Finally, because every point \mathbf{w} in the sequence $\{\mathbf{w}_{i_j}\}$ is green, by the coloring rule, we have $$f_1(\mathbf{w}) \ge w_1$$ and $f_2(\mathbf{w}) \ge w_2$, for all \mathbf{w} in the sequence. Since \mathbf{x} is the limit of the sequence $\{\mathbf{w}_{i_j}\}$ and f is continuous, we have $f_1(\mathbf{x}) \geq x_1$ and $f_2(\mathbf{x}) \geq x_2$. Combining all four inequalities, we conclude that \mathbf{x} is a fixed point of f. ## 2 Existence of Rational Nash Equilibria in Two-Player Games Given a two-player game $G = (\mathbf{A}, \mathbf{B})$, where every entry of \mathbf{A} and \mathbf{B} is rational, does it always have a rational Nash equilibrium (\mathbf{x}, \mathbf{y}) in which all the entries are rational numbers? In Nash's paper, he gave a very simple three-player rational game with no rational Nash equilibrium. However, we will prove the following theorem: **Theorem 2.** Every rational two-player game $G = (\mathbf{A}, \mathbf{B})$ has a rational Nash Equilibrium (\mathbf{x}, \mathbf{y}) . Moreover, the number of bits needed to describe (\mathbf{x}, \mathbf{y}) is polynomial in the input size of G. *Proof.* We will use the following property: If a rational linear program has a solution, then it always has a rational solution. Furthermore, the number of bits needed to describe it is polynomial in the input size of the linear program. We use the idea of **Support Enumeration**. Given vectors $\mathbf{x} \in \Delta_m$ and $\mathbf{y} \in \Delta_n$, we let $$\operatorname{Supp}(\mathbf{x}) = \{i | x_i > 0\} \subseteq [m] \text{ and } \operatorname{Supp}(\mathbf{y}) = \{j | y_j > 0\} \subseteq [n].$$ Now for any pair of nonempty subsets $S \subseteq [m]$ and $T \subseteq [n]$, we let LP(S,T) denote the following linear program with variables $x_1, \ldots, x_m, y_1, \ldots, y_n$: $$\begin{aligned} &\operatorname{LP}(S,T):\\ &\sum_{i\in[m]} x_i = 1\\ &x_i > 0 \quad \text{for all } i \in S\\ &x_i = 0 \quad \text{for all } i \notin S\\ &\sum_{j\in[n]} y_j = 1\\ &y_j > 0 \quad \text{for all } j \in T\\ &y_j = 0 \quad \text{for all } j \notin T\\ &\mathbf{A}_{i,*}\mathbf{y} \geq \mathbf{A}_{j,*}\mathbf{y} \quad \text{for all } i \in S \text{ and } j \in [m]\\ &\mathbf{x}^T \mathbf{B}_{*,i} \geq \mathbf{x}^T \mathbf{B}_{*,j} \quad \text{for all } i \in T \text{ and } j \in [n] \end{aligned}$$ By the definition of Nash equilibria, it is easy to prove the following property: **Property 3.** The linear program LP(S,T) has a solution (\mathbf{x},\mathbf{y}) if and only if (\mathbf{x},\mathbf{y}) is a Nash equilibrium of $G=(\mathbf{A},\mathbf{B})$ such that $$\operatorname{Supp}(\mathbf{x}) = S \quad and \quad \operatorname{Supp}(\mathbf{y}) = T.$$ Now by Nash's theorem, we know $G = (\mathbf{A}, \mathbf{B})$ has a Nash equilibrium $(\mathbf{x}^*, \mathbf{y}^*)$ (even though it may not be rational). Let $S = \operatorname{Supp}(\mathbf{x}^*)$ and $T = \operatorname{Supp}(\mathbf{y}^*)$, then by the property above, $(\mathbf{x}^*, \mathbf{y}^*)$ is a solution to the linear program $\operatorname{LP}(S, T)$. As a result, we know that $\operatorname{LP}(S, T)$ has a rational solution which we denote by (\mathbf{x}, \mathbf{y}) , and the number of bits needed to describe (\mathbf{x}, \mathbf{y}) is polynomial in the input size of G. Using the property above again, (\mathbf{x}, \mathbf{y}) must also be an equilibrium of G, and the theorem follows. \Box # 3 Approximation of Nash Equilibrium We combine support enumeration with the probabilistic method to give an approximation algorithm for Nash equilibria. In this section, we always assume that the entries of \mathbf{A} and \mathbf{B} are between 0 and 1. For simplicity, we also assume that both matrices are n-by-n. **Definition 4.** Given $G = (\mathbf{A}, \mathbf{B})$ with $A_{i,j}, B_{i,j} \in [0, 1]$ for all $i, j \in [n]$, we say (\mathbf{x}, \mathbf{y}) is an ϵ -approximate Nash equilibrium for some $\epsilon > 0$ if $$\mathbf{x}^T \mathbf{A} \mathbf{y} \ge (\mathbf{x}')^T \mathbf{A} \mathbf{y} - \epsilon, \quad \text{for all } \mathbf{x}' \in \Delta_n;$$ $\mathbf{x}^T \mathbf{B} \mathbf{y} \ge \mathbf{x}^T \mathbf{B} \mathbf{y}' - \epsilon, \quad \text{for all } \mathbf{y}' \in \Delta_n.$ We say a probability distribution \mathbf{x} is k-uniform, for some $k \geq 1$, if every entry x_i of \mathbf{x} is a multiple of 1/k. One way to interpret k-uniform distributions is to imagine that there are k balls numbered from 1 to k; and there are k bins numbered from 1 to k. The balls are then tossed arbitrarily into the bins. Every possible result gives a k-uniform distribution: $$x_i = \frac{\text{\# of balls in bin } i}{k}, \quad \text{for all } i \in [n].$$ We will use the probability method to prove the following theorem: **Theorem 5.** Given any two-player game $G = (\mathbf{A}, \mathbf{B})$ with $A_{i,j}, B_{i,j} \in [0,1]$ for all $i, j \in [n]$, it has an ϵ -approximate Nash Equilibrium (\mathbf{x}, \mathbf{y}) in which both \mathbf{x} and \mathbf{y} are k-uniform distributions with $$k = \frac{100 \cdot \ln n}{\epsilon^2}.$$ This theorem gives us the following algorithm to compute an ϵ -approximate Nash equilibrium: - 1. Enumerate all pairs of k-uniform probability distributions (\mathbf{x}, \mathbf{y}) ; - 2. Output (\mathbf{x}, \mathbf{y}) if it is an ϵ -approximate Nash equilibrium. The correctness of this (support enumeration) algorithm (that it always outputs an ϵ -approximate Nash equilibrium of G) follows from the theorem above. It is also easy to see that its time complexity is $$n^{O(k)} = n^{O(\ln n/\epsilon^2)}$$. Proof Sketch of Theorem 5. First of all, by Nash's theorem, G has an equilibrium (\mathbf{x}, \mathbf{y}) with $\mathbf{x}, \mathbf{y} \in \Delta_n$. We use the probabilistic method. To this end, we randomly pick a k-uniform probability distribution $\hat{\mathbf{x}}$ as follows: - 1. For each $i \in [k]$, independently put ball i into bin $j, j \in [n]$, with probability x_j ; - 2. Then set $\hat{x}_j = \#$ of balls in bin j/k for all $j \in [n]$. We also randomly and independently pick a k-uniform distribution $\hat{\mathbf{y}} \in \Delta_n$ using \mathbf{y} in the same way. To prove there exists an ϵ -approximate Nash equilibrium in which both distributions are k-uniform, it suffices to show that $$\Pr\Big[(\widehat{\mathbf{x}},\widehat{\mathbf{y}}) \text{ is an } \epsilon\text{-approximate Nash equilibrium of } G=(\mathbf{A},\mathbf{B})\Big]>0.$$ By the definition of ϵ -approximate equilibria, it suffices to show that $$\Pr\left(\begin{array}{c} \forall i, \ \mathbf{A}_{i,*}\widehat{\mathbf{y}} \leq \widehat{\mathbf{x}}^T \mathbf{A} \widehat{\mathbf{y}} + \epsilon \\ \forall j, \ \widehat{\mathbf{x}}^T \mathbf{B}_{*,j} \leq \widehat{\mathbf{x}}^T \mathbf{B} \widehat{\mathbf{y}} + \epsilon \end{array}\right) > 0.$$ This will follow directly if we can prove that: For every $i \in [n]$, $$\Pr\left[\mathbf{A}_{i,*}\widehat{\mathbf{y}} - \widehat{\mathbf{x}}^T \mathbf{A}\widehat{\mathbf{y}} > \epsilon\right] < \frac{1}{n^{20}}$$ (1) and for every $j \in [n]$, $$\Pr\left[\widehat{\mathbf{x}}^T \mathbf{B}_{*,j} - \widehat{\mathbf{x}}^T \mathbf{B} \widehat{\mathbf{y}} > \epsilon\right] < \frac{1}{n^{20}}.$$ (2) To prove (1), we rewrite it as $$\Pr\left[(\mathbf{A}_{i,*}\widehat{\mathbf{y}} - \mathbf{A}_{i,*}\mathbf{y}) + (\mathbf{A}_{i,*}\mathbf{y} - \mathbf{x}^T\mathbf{A}\mathbf{y}) + (\mathbf{x}^T\mathbf{A}\mathbf{y} - \widehat{\mathbf{x}}^T\mathbf{A}\mathbf{y}) + (\widehat{\mathbf{x}}^T\mathbf{A}\mathbf{y} - \widehat{\mathbf{x}}^T\mathbf{A}\widehat{\mathbf{y}}) > \epsilon \right].$$ (3) Because (\mathbf{x}, \mathbf{y}) is a Nash equilibrium, it follows from the definition that $(\mathbf{A}_{i,*}\mathbf{y} - \mathbf{x}^T \mathbf{A} \mathbf{y}) \leq 0$. As a result, the probability in (3) is upper bounded by $$\Pr\left[\mathbf{A}_{i,*}\widehat{\mathbf{y}} - \mathbf{A}_{i,*}\mathbf{y} > \epsilon/3 \text{ or } \mathbf{x}^T\mathbf{A}\mathbf{y} - \widehat{\mathbf{x}}^T\mathbf{A}\mathbf{y} > \epsilon/3 \text{ or } \widehat{\mathbf{x}}^T\mathbf{A}\mathbf{y} - \widehat{\mathbf{x}}^T\mathbf{A}\widehat{\mathbf{y}} > \epsilon/3\right]$$ $$\leq \Pr\left[\mathbf{A}_{i,*}\widehat{\mathbf{y}} - \mathbf{A}_{i,*}\mathbf{y} > \epsilon/3\right] + \Pr\left[\mathbf{x}^T\mathbf{A}\mathbf{y} - \widehat{\mathbf{x}}^T\mathbf{A}\mathbf{y} > \epsilon/3\right] + \Pr\left[\widehat{\mathbf{x}}^T\mathbf{A}\mathbf{y} - \widehat{\mathbf{x}}^T\mathbf{A}\widehat{\mathbf{y}} > \epsilon/3\right].$$ We bound the first term using the Hoeffding inequality. For each $\ell \in [k]$, let z_{ℓ} denote the following random variable: $z_{\ell} = A_{i,j}$, if ball ℓ is tossed into bin j (when generating $\hat{\mathbf{y}}$ randomly from \mathbf{y}), which happens with probability y_j . As a result, $$E(z_{\ell}) = \sum_{j \in [n]} A_{i,j} \cdot y_j = \mathbf{A}_{i,*} \mathbf{y}$$ and $E(z_1 + \dots + z_k) = k \cdot \mathbf{A}_{i,*} \mathbf{y}$. We also have $$z_1 + \dots + z_k = \sum_{j \in [n]} A_{i,j} \cdot \#$$ of balls in bin $j = k \cdot \mathbf{A}_{i,*} \widehat{\mathbf{y}}$. By using the Hoeffding inequality, we have $$\Pr\left[\mathbf{A}_{i,*}\widehat{\mathbf{y}} - \mathbf{A}_{i,*}\mathbf{y} > \epsilon/3\right] = \Pr\left[(z_1 + \dots + z_k) - E(z_1 + \dots + z_k) > k \cdot \epsilon/3\right] \le e^{-\frac{2k\epsilon^2}{9}} = e^{-\frac{200 \ln n}{9}} \ll \frac{1}{n^{20}}.$$ We can see that the probability of event $\left[\mathbf{A}_{i,*}\widehat{\mathbf{y}} - \mathbf{A}_{i,*}\mathbf{y} > \epsilon/3\right]$ is pretty small. Similarly, one can use Hoeffding inequality to prove that both $$\Pr\left[\mathbf{x}^T \mathbf{A} \mathbf{y} - \widehat{\mathbf{x}}^T \mathbf{A} \mathbf{y} > \epsilon/3\right] \quad \text{and} \quad \Pr\left[\widehat{\mathbf{x}}^T \mathbf{A} \mathbf{y} - \widehat{\mathbf{x}}^T \mathbf{A} \widehat{\mathbf{y}} > \epsilon/3\right]$$ are small. This proves (1). The same argument can be used to prove (2), and the theorem follows. \Box